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Abstract
We discuss the problem of separating consistently the total correlations in a
bipartite quantum state into a quantum and a purely classical part. A measure
of classical correlations is proposed and its properties are explored.

PACS numbers: 03.67.−a, 03.65.Ta

In quantum information theory it is common to distinguish between purely classical
information, measured in bits, and quantum information, which is measured in qubits.
These differ in the channel resources required to communicate them. Qubits may not be
sent by a classical channel alone, but must be sent either via a quantum channel which
preserves coherence or by teleportation through an entangled channel with two classical
bits of communication [1]. In this context, one qubit is equivalent to one unit of shared
entanglement, or ‘e-bit’, together with two classical bits. Any bipartite quantum state may
be used as a communication channel with some degree of success, and so it is of interest to
determine how to separate the correlations it contains into a classical and an entangled part.
A number of measures of entanglement and of total correlations have been proposed in recent
years [2–6]. However, it is still not clear how to quantify the purely classical part of the total
bipartite correlations. In this paper we propose a possible measure of classical correlations
and investigate its properties.

We first review the existing measures of entangled and total correlations. In classical
information theory, the Shannon entropy,H(X) ≡ H(p) = −∑

i pi logpi , is used to
quantify the information in a source,X, that produces messagesxi with probabilitiespi

[7, 8]. The relative entropy is a useful measure of the closeness of two probability distributions
{pi} and {qi} from the same sourceX. The relative entropy of{pi} to {qi} is defined as
H(p‖q) = ∑

i pi log pi

qi
. Correlations between two different random variablesX and Y

are measured by the mutual information,H(X : Y ) = H(X) + H(Y) − H(X, Y ), where
H(X, Y ) = −∑

i,j pij logpij is the joint entropy andpij is the probability of outcomesxi

andyj both occurring. The mutual information measures how much informationX andY
have in common. It may also be defined as a special case of the relative entropy, since it is
a measure of how distinguishable a joint probability distributionpij is from the completely
uncorrelated pair of distributionspipj , H(pij‖pipj ) = H(pi) + H(pj) − H(pij ).
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In a quantum context, the results of a measurement{Ey} on a state represented by a
density matrix,ρ, comprise a probability distributionpy = Tr(Eyρ). The Von Neumann
entropy is a way of measuring the information in a quantum state by taking the entropy of
the probability distribution generated from the stateρ by a projective measurement onto the
state’s eigenvectors [9]. It is defined asS(ρ) = −Tr(ρ logρ) = H(λ), whereλ = {λi} are the
eigenvalues of the state. The classical relative entropy and classical mutual information also
have analogues in the quantum domain. The quantum relative entropy of a stateρ with respect
to another stateσ is defined asS(ρ‖σ) = −S(ρ)−Tr(ρ logσ). The joint entropyS(ρAB) for a
composite systemρAB with two subsystemsA andB is given byS(ρAB) = −Tr(ρAB logρAB)

and the Von Neumann mutual information between the two subsystems is defined as

I (ρA:B) = S(ρA) + S(ρB) − S(ρAB).

As in the classical case, the mutual information is the relative entropy betweenρAB and
ρA ⊗ ρB . The mutual information is usually used to measure the total correlations between
the two subsystems of a bipartite quantum system.

The entanglement of a bipartite quantum stateρAB may be quantified by how
distinguishable it is from the ‘nearest’ separable state, as measured by the relative entropy.
Relative entropy of entanglement, defined as

ERE(ρAB) = min
σAB∈D

S(ρAB‖σAB)

has been shown to be a useful measure of entanglement (D is the set of all separable or
disentangled states) [4, 5]. Note thatERE(ρAB) � I (ρA:B), by definition ofERE(ρAB), since
the mutual information is also the relative entropy betweenρAB and a completely disentangled
state,I = S(ρAB‖ρA ⊗ ρB) and so must be higher than the minimum over all disentangled
states.

Another way to measure the entanglement of a bipartite quantum state is to consider
the process of formation of an ensemble of entangled states [2]. The ensemble is first
prepared locally by Alice, then one subsystem is compressed using Schumacher compression
[10] and sent to Bob by teleportation. The entanglement of formation is then the amount
of entanglement required for the teleportation. For pure states this is given by the
compression efficiency,EF(ρAB) = S(ρB). For mixed states, the entanglementof formation is
EF(ρAB) = min

∑
i piS(ρi

B) � S(ρB), where the minimum is taken over all decompositions
of the mixed state. However, teleportation which requires only this much entanglement must
be accompanied by classical communication of information about the decomposition of the
mixed state [11]. The information in the subsystemS(ρB) is thus split into a classical part and
a quantum part. The classical part may be transmitted by a classical channel, but the quantum
part requires entanglement and is sent by teleportation.

There has been some work on the general problem of splitting information in a particular
quantum state into a classical and a quantum part [12]. Consider performing a general

measurement on the state,AiA
†
i , such thatρi

B = AiρBA
†
i

tr(AiρBA
†
i )

. The final state of subsystemB is

then
∑

i AiρBA
†
i = ∑

i piρ
i
B . The entropy of the residual states is

∑
i piS(ρi

B). The classical
information obtained by measuring outcomesi with probabilitiespi is H(p). If the states
ρi

B have support on orthogonal subspaces, then the entropy of the final state is the sum of the
residual entropy and the classical informationS(

∑
i piρ

i
B) = H(p) +

∑
i piS(ρi

B ). It has
been shown that the stateρB = ∑

i piρ
i
B can be reconstructed with arbitrarily high fidelity

from the classical measurement outcomes and the residual states if and only if the residual
statesρi

B are on orthogonal subspaces [12]. We see then that the information in a quantum
state may be split into a quantum and a classical part.
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We now ask how this can be done for correlations between two subsystems. We would
like a way to measure the classical correlations between two subsystems. We first suggest
four reasonable properties we should expect a measure of classical correlations,C, to satisfy:

(i) C = 0 for ρ = ρA ⊗ ρB . This requires that product states are not correlated.
(ii) C is invariant under local unitary transformations. This is because any change of basis

should not affect the correlation between two subsystems.
(iii) C is non-increasing under local operations. If the two subsystems evolveindependently

then the correlation between them cannot increase.
(iv) C = S(ρA) = S(ρB) for pure states. This is a natural requirement, as we will see below.

Note that (ii) and (iv) are also required of a measure of entanglement. If classical
communication were added to (iii), it would be identical to the corresponding condition for
entanglement measures. However, if classical communication is allowed, then the classical
correlations could increase as well as decrease, which is not satisfactory. It is also natural
that the measureC should be symmetric under interchange of the subsystemsA andB. This is
because it should quantify the correlation between subsystems rather than a property of either
subsystem. However, we do not include this as a separate constraint as it is not clear that this
condition is independent of (i)–(iv).

We now suggest a measure which satisfies these properties. The proposed measure is

CB(ρAB) = max
B
†
i Bi

S(ρA) −
∑

i

piS
(
ρi

A

)
(1)

where B
†
i Bi is a POVM performed on the subsystem B andρi

A = trB(BiρABB
†
i )/

trAB(BiρABB
†
i ) is the remaining state ofA after obtaining the outcomei onB. Alternatively,

CA(ρAB) = max
A
†
i Ai

S(ρB) −
∑

i

piS
(
ρi

B

)
(2)

if the measurement is performed on subsystemA instead of onB. ClearlyCA(ρAB) = CB(ρAB)

for all statesρAB such thatS(ρA) = S(ρB). It remains an open question whether this is true
in general. The measure is a natural generalization of the classical mutual information, which
is the difference in uncertainty about the subsystemB (A) before and after a measurement on
the correlated subsystemA (B), H(A : B) = H(B) − H(B|A). Similarly, equations (1) and
(2) represent the difference in Von Neumann entropy before and after the measurement. Note
the similarity of the definition to the Holevo bound which measures the capacity of quantum
states for classical communication [13].

The following example provides an illustration. Consider a bipartite separable state of
the form

ρAB =
∑

i

pi |i〉〈i|A ⊗ ρi
B

where{|i〉} are orthonormal states of subsystemA. Clearly the entanglement of this state is
zero. The best measurement that Alice can make to gain information about Bob’s subsystem
is a projective measurement onto the states{|i〉} of subsystemA. Therefore the classical
correlations are given by

CA(ρAB) = S(ρB) −
∑

i

piS
(
ρi

B

)
.

For this state, the mutual information is also given by

I (ρA:B) = S(ρB) −
∑

i

piS
(
ρi

B

)
.
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This is to be expected since there are no entangled correlations and so the total correlations
betweenA andB should be equal to the classical correlations.

We now investigate the properties of the quantities in equations (1) and (2). Property (i)
above is clearly satisfied, since the state of subsystemB corresponding to any measurement
result i on subsystemA is still ρB for a product state. In fact,C(ρAB) = 0 if and only
if ρAB = ρA ⊗ ρB . Property (ii) is satisfied since the Von Neumann entropy is invariant
under local unitary transformations. Property (iv) is also satisfied since for pure states
CA(ρAB) = S(ρA) (CB(ρAB) = S(ρB) = S(ρA) = CA(ρAB)) can always be achieved by
local projection onto the Schmidt basis. Therefore for pure statesE(ρAB) = C(ρAB) and
I (ρA:B) = 2E(ρAB) = 2C(ρAB) (hereE(ρAB) may be eitherERE(ρAB) or EF(ρAB) since
these measures coincide for pure states). The most important property required of a measure
of classical correlations is that it is non-increasing under local operations (property (iii)). We
now show that this property is satisfied by the proposed measure.

Property (iii). The measureCA(CB) is non-increasing under local operations.

Proof. Let {A†
iAi :

∑
i A

†
iAi = I } be the POVM which maximizes

CA = max
A
†
i Ai

S(ρB) −
∑

i

piS
(
ρi

B

) = max
A
†
i Ai

∑
i

piS
(
ρi

B

∥∥ρB

)
.

(a) Consider a local operationφA on subsystemA. This may be regarded as part of the POVM
on A soCA, being a maximum, is not affected.

(b) Now take a local operationφB on subsystemB. Then by the property that the relative
entropy does not increase under local operations [14]∑

i

piS
(
ρi

B

∥∥ρB

)
�

∑
i

piS
(
φB

(
ρi

B

)∥∥φB(ρB)
)
.

ThereforeCA does not increase under local operations. �

We now consider the relations between the classical, total and entangled correlations in
some simple cases. These raise some interesting general questions.

First, consider a maximally entangled pure state,|φ+〉〈φ+|, and the family of states that
interpolate between it and its completely decohered state|00〉 〈00|+ |11〉 〈11|. These are states
of the form

ρAB = p|φ+〉〈φ+| + (1 − p)|φ−〉〈φ−|
where 1

2 � p � 1. The mutual information as a function ofp is I (ρA:B) = 2 + p logp

+ (1− p) log(1− p). The entanglement isERE(ρAB) = 1 +p logp + (1− p) log(1− p) [5].
However the classical correlations remain constant atCA(ρAB) = CB(ρAB) = C(ρAB) = 1.
This is achieved by a projective measurement onto{|0〉 〈0|, |1〉 〈1|}, and must be the maximum
becauseC cannot exceed one. For this example, the total correlations are just the sum of the
entangled and the classical correlations,I (ρA:B) = ERE(ρAB) + C(ρAB), see figure 1.

We now consider a Werner state of the form

ρAB = p|φ+〉〈φ+| +
1 − p

4
I

with 1
2 � p � 1. The mutual information is given by

I (ρA:B) = 2 + f logf + (1 − f ) log

(
1 − f

3

)

wheref = 3p+1
4 . The relative entropy of entanglement isERE(ρAB) = 1 +f logf + (1− f )

× log(1 − f ) [5]. The state is symmetric under interchange of subsystemsA and B, so
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Figure 1. Correlations for a mixture of two Bell states,ρAB = p|φ+〉〈φ+| + (1− p)|φ−〉〈φ−|, as
a function ofp.

CA(ρAB) = CB(ρAB) ≡ C(ρAB). Any orthogonal projection produces the same value for the
classical correlations. We call this quantityCp(ρAB). ClearlyCp(ρAB) � C(ρAB). These
quantities are plotted in figure 2.

Consider now a state of the form

ρAB = p|0〉|0〉〈0|〈0| + (1 − p)|+〉|+〉〈+|〈+|.
Again, the state is symmetrical with regard toA andB, soCA(ρAB) = CB(ρAB) ≡ C(ρAB).
This state provides a simple example where the states on both sides are non-orthogonal. In this
case, the optimal single-shot measurement for distinguishing the two states|0〉 and|+〉 with
respect to probability of error is known [15]. However, interestingly it is not the measurement
which optimises the classical correlations. We optimize over all orthogonal measurements
and call the resulting quantityCp(ρAB). This is plotted in figure 3, together with the mutual
information.

In these last two examples, we see thatCp(ρAB) + ERE(ρAB) < I (ρA:B). If the
classical correlations are maximized by an orthogonal measurement on one subsystem,
(Cp(ρAB) = C(ρAB)), the classical and entangled correlations do not account for all the total
correlations. This may indicate that the quantum mutual information is not the best quantity for
measuring total correlations, or that correlations are simply not additive in this sense. However,
Cp(ρAB) may not coincide withC(ρAB). It is also possible that an asymptotic measurement
on many copies of the state would achieve a higher value for the classical correlations than
measurements on a single copy. This is because the classical correlations are super-additive,
C(ρ ⊗ ρ) � 2C(ρ). It is interesting to note that, on the other hand, entangled correlations, as
measured byERE orEF, are subadditive,E(ρ ⊗ρ) � 2E(ρ), and total correlations, measured
by the mutual information, are additiveI (ρ ⊗ ρ) = 2I (ρ).

A number of interesting questions are raised about the general relations betweenI, E
andC. We do not know whether the sum of the two types of correlations is generally greater
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Figure 2. Correlations for a Werner state,ρAB = p|φ+〉〈φ+| + 1−p
4 I , as a function ofp.
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Figure 3. Correlations for the separable state,ρAB = p|0〉|0〉〈0|〈0| + (1 − p)|+〉|+〉〈+|〈+|, as a
function ofp.

than, less than or equal to the total correlations, when asymptotic measurements are taken into
account. For mixed states, we saw that it need no longer be true thatE(ρAB) = C(ρAB),
as it is for pure states. This raises the question of whetherE(ρAB) = C(ρAB) if and only if
ρAB is pure. In our examples we foundE(ρAB) � C(ρAB), and we conjecture that this is
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generally true. We know thatERE(ρAB) � I (ρA:B). Is it also true thatC(ρAB) � I (ρA:B) in
general?

Another possible measure of classical correlations could be based on the relative
entropy, just as measures of total and entangled correlations are both relative entropies,
I (ρA:B) = S(ρAB‖ρA ⊗ ρB), and E(ρA:B) = minσAB∈D S(ρAB‖σAB) [4, 5]. Classical
correlations could then be given by the relative entropy between the closest separable state,
σ ∗

AB , and the product stateρA ⊗ ρB,CRE = S(σ ∗
AB‖ρA ⊗ ρB). For the example of a

mixture of two Bell states,CRE(ρAB) coincides withC(ρAB) = 1. For the separable
stateρAB = p|0〉|0〉〈0|〈0| + (1 − p)|+〉|+〉〈+|〈+|, CRE(ρAB) = I (ρA:B), which makes sense
intuitively since there is no entanglement. However, for Werner states, the relative entropy
of classical correlations remains constant atCRE(ρAB) = 0.2075. Therefore for low values
of p, CRE(ρAB) > ERE(ρAB), whereas for high values,CRE(ρAB) < ERE(ρAB). In general
I (ρA:B) > CRE(ρAB) + ERE(ρAB), so that the two types of correlations do not sum to the
total. It also remains to be proved whetherCRE is non-increasing under local operations.

In this paper we have raised the question of how to quantify the purely classical part
of a correlated quantum system, and we have suggested a potential candidate for a measure
which satisfies the most important property of being non-increasing under local operations.
A number of interesting open questions about the relationship between measures of classical,
entangled and total correlations have been raised. It is hoped that a quantitative understanding
of the different types of correlations might aid our understanding of protocols involving
manipulation of entanglement and classical information. In particular it should shed some
light on the conversion from entanglement to classical information which occurs in the process
of quantum measurement.
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